This is the second post in a collaborative series titled “Environmental Historians Debate: Can Nuclear Power Solve Climate Change?“. It is hosted by the Network in Canadian History & Environment, the Climate History Network, and ActiveHistory.ca.
By Kate Brown
Climate change is here to stay. So too for the next several millennia is radioactive fallout from nuclear accidents such as Chernobyl and Fukushima. Earthlings will also live with radioactive products from the production and testing of nuclear weapons. The question as to whether next generation technologies of nuclear power plants will be, as their promoters suggest, “perfectly safe” appears to decline in importance as we consider the catastrophic outcome of continued use of carbon-based fuels. Sea levels rising 10 feet, temperatures warming 3 degrees Celsius, tens of millions of climate refugees on the move. These predicted climate change catastrophes make nuclear accidents such as the 1986 Chernobyl accident look like a tiny blip in planetary time.
Or maybe not. It is hard to compare an event in the past to one in the future that has not yet occurred. I have found researching for the past four years the medical and environmental history of the Chernobyl disaster that the health consequences were far greater than has been generally acknowledged. Rather than 35 to 54 fatalities recorded by UN agencies, the count in Ukraine alone (which received the least amount of radioactive fallout of the three affected Soviet republics) ranges between 35,000 and 150,000 fatalities from exposures to Chernobyl radioactivity. Instead of 200 people hospitalized after the accident, my tally from the de-classified archives is at least 40,000 people in the three most affected republics just in the summer months following the disaster.
We don’t have to focus just on human health to worry about the future of humans on earth. Following biologists around the Chernobyl Zone the past few years, I learned that in the most contaminated territories of the Chernobyl Zone radioactivity has knocked out insects and microbes that are essential for the job of decomposition and pollination. Biologists Tim Mousseau and Anders Møller found radical decreases in pollinators in highly contaminated areas; the fruit flies, bees, butterflies and dragonflies were decimated by radioactivity in soils where they lay their eggs. They found that fewer pollinators meant less productive fruit trees. With less fruit, fruit-eating birds like thrushes and warblers suffered demographically and declined in number. With few frugivores, fewer fruit trees and shrubs took root and grew. The team investigated 19 villages in a 15-kilometer circle around the blown plant and found that just two apple trees had seed in two decades after the 1986 explosion.?1 The loss of insects, especially pollinators, we know, spells doom for humans on earth.?2 There are, apparently, many ways for our species to go extinct. Climate change is just one possibility. Continue reading